• 0 Posts
  • 26 Comments
Joined 10 months ago
cake
Cake day: July 7th, 2024

help-circle




  • We don’t know what it is. We don’t know how it works. That is why

    If you cannot tell me what you are even talking about then you cannot say “we don’t know how it works,” because you have not defined what “it” even is. It would be like saying we don’t know how florgleblorp works. All humans possess florgleblorp and we won’t be able to create AGI until we figure out florgleblorp, then I ask wtf is florgleblorp and you tell me “I can’t tell you because we’re still trying to figure out what it is.”

    You’re completely correct. But you’ve gone on a very long rant to largely agree with the person you’re arguing against.

    If you agree with me why do you disagree with me?

    Consciousness is poorly defined and a “buzzword” largely because we don’t have a fucking clue where it comes from, how it operates, and how it grows.

    You cannot say we do not know where it comes from if “it” does not refer to anything because you have not defined it! There is no “it” here, “it” is a placeholder for something you have not actually defined and has no meaning. You cannot say we don’t know how “it” operates or how “it” grows when “it” doesn’t refer to anything.

    When or if we ever define that properly

    No, that is your first step, you have to define it properly to make any claims about it, or else all your claims are meaningless. You are arguing about the nature of florgleblorp but then cannot tell me what florgleblorp is, so it is meaningless.

    This is why “consciousness” is interchangeable with vague words like “soul.” They cannot be concretely defined in a way where we can actually look at what they are, so they’re largely irrelevant. When we talk about more concrete things like intelligence, problem-solving capabilities, self-reflection, etc, we can at least come to some loose agreement of what that looks like and can begin to have a conversation of what tests might actually look like and how we might quantify it, and it is these concrete things which have thus been the basis of study and research and we’ve been gradually increasing our understanding of intelligent systems as shown with the explosion of AI, albeit it still has miles to go.

    However, when we talk about “consciousness,” it is just meaningless and plays no role in any of the progress actually being made, because nobody can actually give even the loosest iota of a hint of what it might possibly look like. It’s not defined, so it’s not meaningful. You have to at least specify what you are even talking about for us to even begin to study it. We don’t have to know the entire inner workings of a frog to be able to begin a study on frogs, but we damn well need to be able to identify something as a frog prior to studying it, or else we would have no idea that the thing we are studying is actually a frog.

    You cannot study anything without being able to identify it, which requires defining it at least concretely enough that we can agree if it is there or not, and that the thing we are studying is actually the thing we aim to study. We should I believe your florgleblorp, sorry, I mean “consciousness” you speak of, even exists if you cannot even tell me how to identify it? It would be like if someone insisted there is a florgleblorp hiding in my room. Well, I cannot distinguish between a room with or without a florgleblorp, so by Occam’s razor I opt to disbelieve in its existence. Similarly, if you cannot tell me how to distinguish between something that possesses this “consciousness” and something that does not, how to actually identify it in reality, then by Occam’s razor I opt to disbelieve in its existence.

    It is entirely backwards and spiritualist thinking that is popularized by all the mystics to insist that we need to study something they cannot even specify what it is first in order to figure out what it is later. That is the complete reversal of how anything works and is routinely used by charlatans to justify pseudoscientific “research.” You have to specify what it is being talked about first.


  • we need to figure out what consciousness is

    Nah, “consciousness” is just a buzzword with no concrete meaning. The path to AGI has no relevance to it at all. Even if we develop a machine just as intelligent as human beings, maybe even moreso, that can solve any arbitrary problem just as efficiently, mystics will still be arguing over whether or not it has “consciousness.”

    Edit: You can downvote if you want, but I notice none of you have any actual response to it, because you ultimately know it is correct. Keep downvoting, but not a single one of you will actually reply and tell us me how we could concretely distinguish between something that is “conscious” and something that isn’t.

    Even if we construct a robot that fully can replicate all behaviors of a human, you will still be there debating over whether or not is “conscious” because you have not actually given it a concrete meaning so that we can identify if something actually has it or not. It’s just a placeholder for vague mysticism, like “spirit” or “soul.”

    I recall a talk from Daniel Dennett where he discussed an old popular movement called the “vitalists.” The vitalists used “life” in a very vague meaningless way as well, they would insist that even if understand how living things work mechanically and could reproduce it, it would still not be considered “alive” because we don’t understand the “vital spark” that actually makes it “alive.” It would just be an imitation of a living thing without the vital spark.

    The vitalists refused to ever concretely define what the vital spark even was, it was just a placeholder for something vague and mysterious. As we understood more about how life works, vitalists where taken less and less serious, until eventually becoming largely fringe. People who talk about “consciousness” are also going to become fringe as we continue to understand neuroscience and intelligence, if scientific progress continues, that is. Although this will be a very long-term process, maybe taking centuries.



  • The space mechanics was definitely one of the great things about that game, in my opinion. Most space games when you land you just press a button and it plays an animation. Having to land manually with a landing camera is very satisfying. When you crash and parts of your ship break and you have to float outside to fix it, that was also very fun. I feel like a lot of space games are a bit lazy about the actual space mechanics, this game did it very well.


  • A lot of people who present quantum mechanics to a laymen audience seem to intentionally present it to be as confusing as possible because they like the “mystery” behind it. Yet, it is also easy to present it in a trivially simple and boring way that is easy to understand.

    Here, I will tell you a simple framework that is just 3 rules and if you keep them in mind then literally everything in quantum mechanics makes sense and follows quite simply.

    1. Quantum mechanics is a probabilistic theory where, unlike classical probability theory, the probabilities of events can be complex-valued. For example, it is meaningful in quantum mechanics for an event to have something like a -70.7i% chance of occurring.
    2. The physical interpretation of complex-valued probabilities is that the further the probability is from zero, the more likely it is. For example, an event with a -70.7i% probability of occurring is more likely than one with a 50% probability of occurring because it is further from zero. (You can convert quantum probabilities to classical just by computing their square magnitudes, which is known as the Born rule.)
    3. If two events or more become statistically correlated with one another (this is known as “entanglement”) the rules of quantum mechanics disallows you from assigning quantum probabilities to the individual systems taken separately. You can only assign the quantum probabilities to the two events or more taken together. (The only way to recover the individual probabilities is to do something called a partial trace to compute the reduced density matrix.)

    If you keep those three principles in mind, then everything in quantum mechanics follows directly, every “paradox” is resolved, there is no confusion about anything.

    For example, why is it that people say quantum mechanics is fundamentally random? Well, because if the universe is deterministic, then all outcomes have either a 0% or 100% probability, and all other probabilities are simply due to ignorance (what is called “epistemic”). Notice how 0% and 100% have no negative or imaginary terms. They thus could not give rise to quantum effects.

    These quantum effects are interference effects. You see, if probabilities are only between 0% and 100% then they can only be cumulative. However, if they can be negative, then the probabilities of events can cancel each other out and you get no outcome at all. This is called destructive interference and is unique to quantum mechanics. Interference effects like this could not be observed in a deterministic universe because, in reality, no event could have a negative chance of occurring (because, again, in a deterministic universe, the only possible probabilities are 0% or 100%).

    If we look at the double-slit experiment, people then ask why does the interference pattern seem to go away when you measure which path the photon took. Well, if you keep this in mind, it’s simple. There’s two reasons actually and it depends upon perspective.

    If you are the person conducting the experiment, when you measure the photon, it’s impossible to measure half a photon. It’s either there or it’s not, so 0% or 100%. You thus force it into a definite state, which again, these are deterministic probabilities (no negative or imaginary terms), and thus it loses its ability to interfere with itself.

    Now, let’s say you have an outside observer who doesn’t see your measurement results. For him, it’s still probabilistic since he has no idea which path it took. Yet, the whole point of a measuring device is to become statistically correlated with what you are measuring. So if we go to rule #3, the measuring device should be entangled with the particle, and so we cannot apply the quantum probabilities to the particle itself, but only to both the particle and measuring device taken together.

    Hence, for the outside observer’s perspective, only the particle and measuring device collectively could exhibit quantum interference. Yet, only the particle passes through the two slits on its own, without the measuring device. Thus, they too would predict it would not interfere with itself.

    Just keep these three rules in mind and you basically “get” quantum mechanics. All the other fluff you hear is people attempting to make it sound more mystical than it actually is, such as by interpreting the probability distribution as a literal physical entity, or even going more bonkers and calling it a grand multiverse, and then debating over the nature of this entity they entirely made up.

    It’s literally just statistics with some slightly different rules.


  • And as any modern physicist will tell you: most of reality is indeed invisible to us. Most of the universe is seemingly comprised of an unknown substance, and filled with an unknown energy.

    How can we possibly know this unless it was made through an observation?

    Most of the universe that we can see more directly follows rules that are unintuitive and uses processes we can’t see. Not only can’t we see them, our own physics tells is it is literally impossible to measure all of them consistently.

    That’s a hidden variable theory, presuming that systems really have all these values and we just can’t measure them all consistently due to some sort of practical limitation but still believing that they’re there. Hidden variable theories aren’t compatible with the known laws of physics. The values of the observables which become indefinite simply cease to have existence at all, not that they are there but we can’t observe them.

    But subjective consciousness and qualia fit nowhere in our modern model of physics.

    How so? What is “consciousness”? Why do you think objects of qualia are special over any other kind of object?

    I don’t think it’s impossible to explain consciousness.

    You haven’t even established what it is you’re trying to explain or why you think there is some difficulty to explain it.

    We don’t even fully understand what the question is really asking. It sidesteps our current model of physics.

    So, you don’t even know what you’re asking but you’re sure that it’s not compatible with the currently known laws of physics?

    I don’t subscribe to Nagel’s belief that it is impossible to solve, but I do understand how the points he raises are legitimate points that illustrate how consciousness does not fit into our current scientific model of the universe.

    But how?! You are just repeating the claim over and over again when the point of my comment is that the claim itself is not justified. You have not established why there is a “hard problem” at all but just continually repeat that there is.

    If I had to choose anyone I’d say my thoughts on the subject are closest to Roger Penrose’s line of thinking, with a dash of David Chalmers.

    Meaningless.

    I think if anyone doesn’t see why consciousness is “hard” then there are two possibilities: 1) they haven’t understood the question and its scientific ramifications 2) they’re not conscious.

    You literally do not understand the topic at hand based on your own words. Not only can you not actually explain why you think there is a “hard problem” at all, but you said yourself you don’t even know what question you’re asking with this problem. Turning around and then claiming everyone who doesn’t agree with you is just some ignoramus who doesn’t understand then is comically ridiculous, and also further implying people who don’t agree with you may not even be conscious.

    Seriously, that’s just f’d up. What the hell is wrong with you? Maybe you are so convinced of this bizarre notion you can’t even explain yourself because you dehumanize everyone who disagrees with you and never take into consideration other ideas.


  • This is accurate, yes. The cat in the box is conscious presumably, in my opinion of cats at least, but still can be “not an observer” from the POV of the scientist observing the experiment from outside the box.

    “Consciousness” is not relevant here at all. You can write down the wave function of a system relative to a rock if you wanted, in a comparable way as writing down the velocity of a train from the “point of view” of a rock. It is coordinate. It has nothing to do with “consciousness.” The cat would perceive a definite state of the system from its reference frame, but the person outside the box would not until they interact with it.

    QM is about quite a lot more than coordinate systems

    Obviously QM is not just coordinate systems. The coordinate nature of quantum mechanics, the relative nature of it, is merely a property of the theory and not the whole theory. But the rest of the theory does not have any relevance to “consciousness.”

    and in my opinion will make it look weird in retrospect once physics expands to a more coherent whole

    The theory is fully coherent and internally consistent. It amazes me how many people choose to deny QM and always want to rush to change it. Your philosophy should be guided by the physical sciences, not the other way around. People see QM going against their basic intuitions and their first thought is it must be incomplete and needs to have additional complexity added to it to make it fit their intuitions, rather than just questioning that maybe their basic intuitions are wrong.

    Your other comment was to a Wikipedia page which if you clicked the link on your own source it would’ve told you that the scientific consensus on that topic is that what you’re presenting is a misinterpretation.

    A simple search on YouTube could’ve also brought up several videos explaining this to you.

    Edit: Placing my response here as an edit since I don’t care to continue this conversation so I don’t want to notify.

    Yes, that was what I said. Er, well… QM, as I understand it, doesn’t have to do anything with shifting coordinate systems per se (and in fact is still incompatible with relativity). They’re just sort of similar in that they both have to define some point of view and make everything else in the model relative to it. I’m still not sure why you brought coordinate systems into it.

    A point of view is just a colloquial term to refer to a coordinate system. They are not coordinate in the exact same way but they are both coordinate.

    My point was that communication of state to the observer in the system, or not, causes a difference in the outcome. And that from the general intuitions that drive almost all of the rest of physics, that’s weird and sort of should be impossible.

    No, it doesn’t not, and you’re never demonstrated that.

    Sure. How is it when combined with macro-scale intuition about the way natural laws work, or with general relativity?

    We have never observed quantum effects on the scale where gravitational effects would also be observable, so such a theory, if we proposed one, would not be based on empirical evidence.

    This is very, very very much not what I am doing. What did I say that gave you the impression I was adding anything to it?

    You literally said in your own words we need to take additional things into account we currently are not. You’re now just doing a 180 and pretending you did not say what literally anyone can scroll up and see that you said.

    I am not talking about anything about retrocausality here, except maybe accidentally.

    Then you don’t understand the experiment since the only reason it is considered interesting is because if you interpret it in certain ways it seems to imply retrocausality. Literally no one has ever treated it as anything more than that. You are just making up your own wild implications from the experiment.

    I was emphasizing the second paragraph; “wave behavior can be restored by erasing or otherwise making permanently unavailable the ‘which path’ information.”

    The behavior of the system physically changes when it undergoes a physical interaction. How surprising!



  • Kastrup is entirely unconvincing because he pretends the only two schools of philosophy in the whole universe are his specific idealism and metaphysical realism which he falsely calls the latter “materialism.” He thus never feels the need to ever address anything outside of a critique of a single Laymen understanding of materialism which is more popular in western countries than eastern countries, ignoring the actual wealth of philosophical literature.

    Anyone who actually reads books on philosophy would inevitably find Kastrup to be incredibly unconvincing as he, by focusing primarily on a single school, never justifies many of his premises. He begins from the very beginning talking about “conscious experience” and whatnot when, if you’re not a metaphysical realist, that is what you are supposed to be arguing in the first place. Unless you’re already a dualist or metaphysical realist, if you are pretty much any other philosophical school like contextual realist, dialectical materialist, empiriomonist, etc, you probably already view reality as inherently observable, and thus perception is just reality from a particular point-of-view. It then becomes invalid to add qualifiers to it like “conscious experience” or “subjective experience” as reality itself cannot had qualifiers.

    I mean, the whole notion of “subjective experience” goes back to Nagel who was a metaphysical realist through-and-through and wrote a whole paper defending that notion, “What is it like to be a Bat?”, and this is what Kastrup assumes his audience already agrees with from the get-go. He never addresses any of the criticisms of metaphysical realism but pretends like they don’t exist and he is the unique sole critic of it and constantly calls metaphysical realism “materialism” as if they’re the same philosophy at all. He then builds all of his arguments off of this premise.


  • Reading books on natural philosophy. By that I mean, not mathematics of the physics itself, but what do the mathematics actually tell us about the natural world, how to interpret it and think about it, on a more philosophical level. Not a topic I really talk to many people irl on because most people don’t even know what the philosophical problems around this topic. I mean, I’d need a whole whiteboard just to walk someone through Bell’s theorem to even give them an explanation to why it is interesting in the first place. There is too much of a barrier of entry for casual conversation.

    You would think since natural philosophy involves physics that it would not be niche because there are a lot of physicists, but most don’t care about the topic either. If you can plug in the numbers and get the right predictions, then surely that’s sufficient, right? Who cares about what the mathematics actually means? It’s a fair mindset to have, perfectly understandable and valid, but not part of my niche interests, so I just read tons and tons and tons of books and papers regarding a topic which hardly anyone cares. It is very interesting to read like the Einstein-Bohr debates, or Schrodinger for example trying to salvage continuity viewing a loss of continuity as a breakdown in classical notion of causality, or some of the contemporary discussions on the subject such as Carlo Rovelli’s relational quantum mechanics or Francois-Igor Pris’ contextual realist interpretation. Things like that.

    It doesn’t even seem to be that popular of a topic among philosophers, because most don’t want to take the time to learn the math behind something like Bell’s theorem (it’s honestly not that hard, just a bit of linear algebra). So as a topic it’s pretty niche but I have a weird autistic obsession over it for some reason. Reading books and papers on these debates contributes nothing at all practically beneficial to my life and there isn’t a single person I know outside of online contacts who even knows wtf I’m talking about but I still find it fascinating for some reason.


  • Why do you think consciousness remains known as the “hard problem”, and still a considered contentious mystery to modern science, if your simplistic ideas can so easily explain it?

    You people really need to stop pretending like because one guy published a paper calling it the “hard problem” that it’s somehow a deep impossible to solve scientific question. It’s just intellectual dishonesty, trying to paint it as if it’s equivalent to solving the problem of making nuclear fusion work or something.

    It’s not. And yes, philosophy is full of idiots who never justify any of their premises. David Chalmers in his paper where he calls it the “hard problem” quotes Thomas Nagel’s paper as “proof” that experience is something subjective, and then just goes forward with his argument as if it’s “proven,” but Nagel’s paper is complete garbage, and so nothing Chalmers argues beyond that holds any water, but is just something a lot of philosophers blindly accept even though it is nonsensical.

    Nagel claims that the physical sciences don’t incorporate point-of-view, and that therefore point-of-view must be a unique property of mammals, and that experience is point-of-view dependent, so experience too must come from mammals, and therefore science has to explain the origin of experience.

    But his paper was wildly outdated when he wrote it. By then, we already had general relativity for decades, which is a heavily point-of-view dependent theory as there is no absolute space or time but its properties depend upon your point of view. Relational quantum mechanics also interprets quantum mechanics in a way that gets rid of all the weirdness and makes it incredibly intuitive and simple just with the singular assumption that the properties of particles depends upon point-of-view not that much different than general relativity with the nature of space and time, and so there is no absolute state of a system anymore.

    Both general relativity and relational quantum mechanics not only treat reality as point-of-view dependent but tie itself back directly to experience: they tell you what you actually expect to observe in measurements. In quantum mechanics they are literally called observables, entities identifiable by their experiential properties.

    Nagel is just an example of am armchair philosopher who does not engage with the sciences so he thinks they are all still Newtonian with some sort of absolute world independent of point-of-view. If the natural world is point-of-view dependent all the way down, then none of Nagel’s arguments follow. There is no reason to believe point-of-view is unique to mammals, and then there is further no reason to think the point-of-view dependence of experience makes it inherently mammalian, and thus there is no reason to call experience “subjective.”

    Although I prefer the term “context” rather than “point-of-view” as it is more clear what it means, but it means the same thing. The physical world is just point-of-view dependent all the way down, or that is to say, context-dependent. We just so happen to be objects and thus like any other, exist in a particular context, and thus experience reality from that context. Our experiences are not created by our brains, experience is just objective reality from the context we occupy. What our brain does is think about and reflect upon experience (reality). It formulates experience into concepts like “red,” “tree,” “atom,” etc. But it does not create experience.

    The entire “hard” problem is based on a faulty premise based on science that was outdated when it was written.

    If experience just is reality from a particular context then it makes no sense to ask to “derive” it as Chalmers and Nagel have done. You cannot derive reality, you describe it. Reality just is what it is, it just exists. Humans describe reality with their scientific theories, but their theories cannot create reality. That doesn’t even make sense. All modern “theories of consciousness” are just nonsense as they all are based on the false premise that experience is not reality but some illusion created by the mammalian brain and that “true” reality is some invisible metaphysical entity that lies beyond all possible experience, and thus they demand we somehow need a scientific theory to show how this invisible reality gives rise to the visible realm of experience. The premise is just silly. Reality is not invisible. That is the nonsensical point of view.


  • You should look into contextual realism. You might find it interesting. It is a philosophical school from the philosopher Jocelyn Benoist that basically argues that the best way to solve most of the major philosophical problems and paradoxes (i.e. mind-body problem) is to presume the natural world is context variant all the way down, i.e. there simply is no reality independent of specifying some sort of context under which it is described (kind of like a reference frame).

    The physicist Francois-Igor Pris points out that if you apply this thinking to quantum mechanics, then the confusion around interpreting it entirely disappears, because the wave function clearly just becomes a way of accounting for the context under which an observer is observing a system, and that value definiteness is just a context variant property, i.e. two people occupying two different contexts will not always describe the system as having the same definite values, but may describe some as indefinite which the other person describes as definite.

    “Observation” is just an interaction, and by interacting with a system you are by definition changing your context, and thus you have to change your accounting for your context (i.e. the wave function) in order to make future predictions. Updating the wave function then just becomes like taring a scale, that is to say, it is like re-centering or “zeroing” your coordinate system, and isn’t “collapsing” anything physical. There is no observer-dependence in the sense that observers are somehow fundamental to nature, only that systems depend upon context and so naturally as an observer describing a system you have to take this into account.


  • Quantum mechanics is incompatible with general relativity, it is perfectly compatible with special relativity, however. I mean, that is literally what quantum field theory is, the unification of special relativity and quantum mechanics into a single framework. You can indeed integrate all aspects of relativity into quantum mechanics just fine except for gravity. It’s more that quantum mechanics is incompatible with gravity and less that it is incompatible with relativity, as all the other aspects we associate with relativity are still part of quantum field theory, like the passage of time being relative, relativity of simultaneity, length contraction, etc.



  • The traditional notion of cause and effect is not something all philosophers even agree upon, I mean many materialist philosophers largely rejected the notion of simple cause-and-effect chains that go back to the “first cause” since the 1800s, and that idea is still pretty popular in some eastern countries.

    For example, in China they teach “dialectical materialist” philosophy part of required “common core” in universities for any degree, and that philosophical school sees cause and effect as in a sense dependent upon point of view, that an effect being described as a particular cause is just a way of looking at things, and the same relationship under a different point of view may in fact reverse what is considered the cause and the effect, viewing the effect as the cause and vice-versa. Other points of view may even ascribe entirely different things as the cause.

    It has a very holistic view of the material world so there really is no single cause to any effect, so what you choose to identify as the cause is more of a label placed by an individual based on causes that are relevant to them and not necessarily because those are truly the only causes. In a more holistic view of nature, Laplacian-style determinism doesn’t even make sense because it implies nature is reducible down to separable causes which can all be isolated from the rest and their properties can then be fully accounted for, allowing one to predict the future with certainty.

    However, in a more holistic view of nature, it makes no sense to speak of the universe being reducible to separable causes as, again, what we label as causes are human constructs and the universe is not actually separable. In fact, the physicists Dmitry Blokhintsev had written a paper in response to a paper Albert Einstein wrote criticizing Einstein’s distaste for quantum mechanics as based on his adherence to the notion of separability which stems from Newtonian and Kantian philosophy, something which dialectical materialists, which Blokhintsev self-identified as, had rejected on philosophical grounds.

    He wrote this paper many many years prior to the publication of Bell’s theorem which showed that giving up on separability (and by extension absolute determinism) really is a necessity in quantum mechanics. Blokhintsev would then go on to write a whole book called The Philosophy of Quantum Mechanics where in it he argues that separability in nature is an illusion and under a more holistic picture absolute determinism makes no sense, again, purely from materialistic grounds.

    The point I’m making is ultimately just that a lot of the properties people try to ascribe to “materialists” or “naturalists” which then later try to show quantum mechanics is in contradiction with, they seem to forget that these are large umbrella philosophies with many different sects and there have been materialist philosophers criticizing absolute determinism as even being a meaningful concept since at least the 1800s.


  • Use IBM’s cloud quantum computers to learn a bit, you can indeed find YouTube videos that explain to you how to do the calculations and then you can just play around making algorithms on their systems and verifying that you can do the calculations correctly. With that knowledge alone you can then begin to learn how to step through a lot of the famous experiments that all purport to show the strangeness of quantum mechanics, like Bell’s theorem, the “bomb tester” thought experiment, GHZ experiment, quantum teleportation, etc, as most of the famous ones can be implemented on a quantum computer and you can get an understanding of why they are interesting.